
 
 

 

  

Abstract—This paper uses the physiological 
hand tremor signal as a window to observe and analyze 
the central nervous system’s (CNS) organization. In this 
perspective we investigated the possibility to model and 
to explain the CNS’s influence (central photic driving 
influence) in physiological hand tremor. An adaptive 
system was used to model this behavior already proved 
by us in a previous paper. The system receives stimuli of 
the visual stimulation frequency and it has to produce 
similar spectrum components with ones obtained for the 
real physiological hand tremor signal. The obtained 
neuronal model was then used to characterize the 
neuronal pathway and to explain the visual influence. 

I. INTRODUCTION 
he understanding of the physiology of tremor 
movements has made significant progress in the last 
decade, but many hypotheses are not yet tested enough 

and are not supported on sufficient data. The neurology 
science needs to develop and validate such hypotheses, 
because this is the only way to develop appropriate medical 
and surgical therapies and to have a close understanding of 
the neurological system. 

For a large variety of pathological tremor activities (like 
essential tremor and tremor that appears in Parkinson 
disease) it has been already proved the influence of the 
central oscillator in producing the rhythmic activation of the 
motoneurons that controls the extremities [1], [2], [3]. 
Moreover, multiple central oscillators are responsible for the 
tremor in different extremities of patients with Parkinson's 
disease and essential tremor [3], [4]. 

For the physiological hand tremor movements several 
basic mechanisms have been proposed and tested for such 
an oscillatory muscular activity: intrinsic muscle properties, 
mechanical oscillation resonances, oscillations based on 
reflexes, oscillations due to central neuronal influences and, 
not in the last, oscillations due to disturbed feed-forward or 
feedback loops. 

There are different studies that concurrently support [5], 
[6] or invalidate [2] the central neuronal origins of the 
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physiological hand tremor. Due to the contradictory results, 
to the different conditions of data recording and analyses, to 
the existence of different neurological pathologies of the 
investigated subjects, it was difficult to support without any 
doubts the central origins of some spectral components of 
the tremor signal. 

In order to determine if the physiological hand tremor 
movements are originated in the central nervous system we 
have devised a number of experiments to evidence this 
influence [7], [8]. As a result, we demonstrated that the 
visual stimulation is reflected in the tremor signal by a 
spectral component situated at double the stimuli frequency 
[8]. The changes in the frequency characteristics of the 
tremor signal due to visual stimuli demonstrated a 
significant connection between visual regions in the CNS 
and the regions governing tremor (parts of the somatic 
motor system). Moreover, in this case the global complexity 
of the system that generates the tremor increases, fact that 
was revealed by the analysis of system’s complexity in a 
study of the tremor signals recorded in a photic driving 
paradigm [9]. This confirms the emerging coupling strength 
that appears in the moment of stimuli presentation between 
the visual CNS pathways and the motor centers generating 
tremor. 

The origins of these oscillations that are driving the 
physiological hand tremor are still unknown. They could be 
cortical and/or subcortical (e.g. thalamus, brainstem etc.). 
Also, from the experimental data there is no evidence for 
“pure” sensory pathways, figured as dashed line in Figure 1. 
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The role of the majority of the thalamic relays regions are 
not yet understand, but it is recognized the evidence of [10]: 
the connectivity patterns shown in Figure 1, the related 
motor thalamic connections and the motor function of the 
associated thalamic relays. This connectivity pattern is also 
true for the axons that arise in the layer five of the cortex 
that branch to the: “higher-order” thalamic relays  and to the 
lower motor centers. Moreover, the main motor neurons for 
voluntary movement, called Betz cells, are placed in the fifth 
cortical layer of the primary motor cortex (a possible 
generator for physiological hand tremor). 

This paper presents a computational model of the central 
photic driving influence, based on real physiological hand 
tremor signals. Its main goal is to analyze the neuronal 
pathways able to exhibit the real spectral behavior observed 
in the real life hand tremor. This behavior is one 
characterized by a spectral component on the hand tremor 
signal situated at the double of the visual stimuli frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. METHODS 
Two different paradigms of model analysis type will be 

implemented. In the first neuronal model the pathway 
formed by: (1) the visual cortex (more general, visual 
system), (2) higher centers of the somatic motor system and 
(3) motor neurons of the spinal cord (motor units) will be 
analyzed. For this we used the demonstrated results of the 
existence of direct or, maybe, indirect efferent pathways 
(through activator ascendent reticular system, thalamic 
relays etc.) between the visual system’s specific pathways 
and those of the somatic motor system [8]. In the second 
analyze, a higher order thalamic relay will be additionally 
modeled, Figure 1, in order to address the relationship 
between the visual stimulation frequency and the spectral 
component reflected in the tremor signal. 

The cortical (subcortical)-motor coupling mechanism is 
modeled by a system consisting of an adaptive network 

modeling the neuronal pathways. The adaptive system led 
by an external driving force is a Hindmarsh-Rose (HR) 
neuronal model coupled with a virtual signal generator. The 
reference signal in the adaptation process was a real 
physiological hand tremor signal acquired previously with a 
special multimodal virtual reality device named Virtual 
Joystick [7], [11]. The system was trained based on the 
adaptation error between the output of the adaptive structure 
(the hand displacement, Figure 2) and the desired signal – a 
real physiological hand tremor. 

In both model analyses the ability of the adaptive neural 
network was tested in order to address their ability to model 
the characteristics of the real physiological hand tremor 
displacements, in two different situations: with and, 
respectively, without photic driving external influence. 

 The choice of the HR neuronal model for these analyses 
was motivated by the ability of this model to exhibit all of 
the neurocomputational properties that mimics the living 
cortical neurons: regular spiking excitatory neurons, low-
threshold spiking neurons and fast spiking neurons [12]. 
Moreover, the HR model, equation (1), is one with minimal 
complexity (i.e., three variables only), and with a very good 
biological plausibility [12]. 

 

( )
.

0

.

2
.

10
23

])([

cos










−−⋅⋅=

−⋅−=

+++−⋅+⋅−=

zxxsrz

yxdcy

tIIzxbxayx

i

ωξ&

 (1) 

 
This neuron model is used to mimics the regular spiking 

and chaotic spiking-bursting activity of the central pattern 
generator. 

In the equation 1 the x(t) variable represents the 
membrane potential, y(t) describes the dynamics of the 
resetting mechanism that restores the polarity of the 
membrane – being a recovery variable, z(t) is the internal 
mechanism which regulates the patterns of discharges 
allowing the control of the interspike interval and ξ 
represents the background Gaussian white noise (synaptic, 
dendritic, axonic noise etc.) that is important in the 
stochastic resonance phenomena. The I0 parameter denotes 
the intensity of a constant (tonic) signal that is delivered to 
the neuron from the external world. In order to compare our 
HR neuronal behavior with the one obtained in other studies 
[13] the parameters of the HR neuronal model were fixed to: 
a = 1, b = 3, c = 1, d = 5, r = 0.006, s = 4 and x0 = -1.6. The 
variance of the noise was set equal to 1 and I0 took value 5. 
In the final stage the values of the x(t) spiking process were 
normalized in the range of [-0.9, 0.9] in order to avoid the 
saturation of the neuronal adaptive elements. 

In Figure 3 there are presented the Hindmarsh-Rose 
neuronal model characteristics for an artificial neuron driven 
externally by a virtual signal generator having the amplitude 

 
Fig. 2.  The implementation of the neuronal model for the first analysis 



 
 

 

equal to 8 and a frequency of 10 Hz. The results were 
obtained having the rest of the model parameters identical 
with the ones presented previously.   

In both model paradigms only one central oscillator was 

used to produce a rhythmic activation of the limb 
motoneurons. The output of the HR central oscillator, x(t), 
stimulates simultaneously different motor units at different 
time delays. The stimulation time delays were obtained 
using several delay units, Figure 2. There are two 
motivations of using these delay units: 
 First - in the real case the motor units are recruited in a 

fixed order from the weakest to the strongest ones, based 
on the Henneman size principle: first are recruited the 
slow units which generate the smallest force but are the 
most resistant to fatigue, followed by the fast fatigue-
resistant elements that are recruited next and, at the end 
are recruited the fast fatigable motor units which generate 
the strongest force.  

 Second - one synchronization pattern encountered at the 
motor units’ level is the “broad-peak” synchronization 
that is due and depends on the number of synapses 
separating the motor neurons from their shared inputs 
[14]. 
In order to model these two behaviors, several delays 

elements were used. In this mode not all the motor units are 

“fired” in the same time. 
In both analyses the numbers of the processing units 

placed on the neural network layer associated with the real 
motor units, were varied from 10 units up to 150 units. In a 
real situation the innervation’s ratio (the number of muscle 
fibers innervated by one motor neuron) can vary between 10 
and 2000. A low innervation’s ratio indicates a greater 
capacity for finely adjustment of the muscle force. 

At the last element of the neuronal network all the outputs 
of the motor units are added in order to model the global 
effect generated by all the muscle fibers innervated by 
different α-efferent neurons. 

The first analysis (that takes into account the visual 
system, the cortical centers of the somatic motor system and 
the lower motor neurons) can represent a model for:  
 the central photic driving influence (the neuronal 

coupling mechanism between the visual CNS pathways 
and the pathways of the somatic motor system), 

 the motor centers generating tremor (including here, as an 
hypothesis, the large Betz cells which synapse directly on 

spinal motor neurons [15], Figure 2). 
The second analysis models additionally a high order 

thalamic relay. The model for the high order thalamic relay 
is implemented through an additionally layer of neurons that 
represent the inter-neurons, Figure 4. For this last model the 
adaptive structure is shaped by an artificial neural network 
(ANN) with two hidden layers (first hidden layer models the 
inter-neurons and the second hidden layer models the motor 
units) excited by HR neuron that represents the central 
oscillator pattern generator.  

Both adaptive neuronal models were trained with the 
backpropagation learning rule, with momentum term [16]. 
The parameters of the model were estimated from the 
available data in order to produce the smallest possible error 
between the network output and the desired signal, using for 
this the least mean squared (L2) error criterion. All the 
neurons from the hidden layers used the tangent hyperbolic 
function as nonlinear activation function. 

 
Fig. 4.  The implementation of the neuronal adaptive model for the 
neuronal pathways going through a thalamic relays 
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Fig. 3.  Hindmarsh-Rose neuronal model analysis:  (a) the spiking 
pattern (b) phase diagram x(t) versus y(t) and (c) x(t) spectrum – 
membrane potential spectrum   



 
 

 

The desired signal for the training phase of the neuronal 
network was composed by two different sets of data. Each 
set of data was provided to the artificial neuronal network 
for one training epoch – named stage; the learning process 
consisted of a repetitive sequence formed by the two data 
sets. The learning process ended when the error was 
sufficiently small. In all odd training epochs 
(corresponding to the first data set/stage) the desired 
signal was represented by the tremor signal acquired without 
any visual stimulation. In this stage of the training the HR 
neuronal model parameter I1 took 0 value; in this mode the 
forcing term of the model, I1cos(ωt), was eliminated. In the 
second stage (represented by all even training epochs) the 
desired signal was given by the tremor signal acquired when 
a repetitive visual stimulus were delivered to the subject. In 
this stage the frequency of the forcing term for the HR 
model was chosen to be identical with the one used in the 
real photic driving data acquisition paradigm and the I1 
parameter was set to 8. 

The tremor signals were acquired from two subjects, one 
male and one female. They were healthy, with no known 
neurological or endocrine pathology and with no known 
Ca2+ or Mg2+ deficiency. The visual stimulation was done at 

5 Hz and 10 Hz and the tremor movements were acquired 
using a sensor without any physical contact with the 
subject’s hand [7], [11]. The subject’s elbow was fixed in 
order to preserve the tremor characteristic unaffected by the 
hand fatigue influence. All the recordings took place in a 
quiet room, without any source of light. The stimuli 
consisted in a circle of 2 cm radius, placed in the middle of 
the display, changing its luminosity between a black 
background followed by a white flash. The stimuli changes 
pattern was a symmetric rectangular wave. The subjects had 
no visual control of their hands position. After the first time 
segment of 32.8 seconds, a visual stimulus of specified 
frequency was presented to the subject. Each recording had 
98.4 s, but only the first 32.8 s and the last 32.8 s of hand 
tremor were kept. The sampling rate was 250 samples per 
second and they had been 8.200 samples per each acquired 
segment of a recording – this is also the number of 
exemplars on each training epoch of the ANN. In order to 
obtain accurate estimators we pre-filtered the signals with a 
low pas filter having the cutoff frequency 40 Hz and 
attenuation in the stop band of -60 dB. 

In a previous analysis, significant (upper than 95% 
confidence limit) coherence values occurs in the tremor 
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Fig 5.  The results obtained for the first paradigm model: (a) the results obtained for the photic driving (second) stage of the learning process, (b) 
the result obtained for the first stage of the learning process, (c) a short region of the learning process (the network output and the desired signal) – 
for the first stage of the learning process and (d) the spectrum of the network output signal and the desired signal for the second stage.  
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signal at the double of the frequency stimuli [8]. In order to 
obtain these results the pooled coherence estimated was 
computed [8]. Unlike these results, in the power spectrum 
the amplitude of the induced spectral components is one 
comparable with both, the amplitude of the observational 
noise and that of the hand tremor signal itself; moreover, 
they overlap the tremor signal both in time and in frequency 
domain, making difficult for the neural network to learn 
these components. However, in order to get a conclusive 
result the desired signal used in the second stage of the 
training process was artificially obtained from the tremor 
signal used in the first stage of the learning process on 
which it was added a sinusoidal component with an 
amplitude of 50 mV. 

III. RESULTS 
For the first paradigm analysis several different 

topologies were tested. The difference between all these 
analyses was given by the number of neurons placed on the 
hidden layer (in the tests the number of alpha neurons were 
varied between 10 elements and up to 150 elements), the 
number of delays elements (2 … 15) and the neuronal model 
was trained using 5 and 10 Hz frequency for the photic 
driving stimulus. Some of the results are presented in Figure 
5. For this class of particular topologies, with only one 
hidden layer, the ANN model was unable to learn correctly 
the desired signals presented in the both learning stages, it 
being able to learn only the tendency of the signals (the 
coarse characteristics generated by the three components of 
the proposed model – the visual system, the cortical centers 
of the somatic motor system and the motor units). These 

results suggest that this first model has not enough power to 
model the real characteristics of the existing nervous 
pathways. 

For the last paradigm the results are presented in Figure 5 
and Figure 6. These results were obtained for the following 
neural network topology: 4 processing elements on the first 
hidden layer (inter-neurons), 70 neurons on the second 
hidden layer (equivalent with alpha neurons) and 4 input 
delay taps. In this case the cumulative mean square error 
(calculated for both learning stages) was 0.00048.  

Using a new hidden layer (as a main difference compared 
with the first paradigm model) provides to the used ANN all 
the necessary power to correctly model the hand tremor 
signal in both learning stages, Figure 5(b) and Figure 6(b). 
In addition, what is more important for this type of artificial 
neuronal model is its capability to model the relationship 
that is established between the visual cortical projection and 
the central oscillator driving the physiological hand tremor 
(in particular, the frequency doubling mechanism).  

In the Figure 5(c) and Figure 6(c) there are presented the 
Fourier transforms for both, the desired signal and the signal 
obtained at the output of the adaptive ANN model. The 
Fourier transform was the Fast Fourier Transform (FFT) 
computed on 1024 samples. The frequency resolution was 
0.244 Hz. The analysis presented on Figure 5(c) and Figure 
6(c) is based on 120 spectral lines. In this mode one 
horizontal division is equivalent with 2.9296 Hz. From the 
spectral information one can observe that the neuronal 
network is able to accurately reproduce the spectral 
components of the desired signal up to 24 Hz.  
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Fig 5.  The results obtained for the second paradigm model in the first stage of the learning process: (a) the desired signal and the output of the neural 
network, (b) a detailed segment of the previously time series, and (c) the spectrum of the network output signal and of the desired signal.   
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IV. DISCUSSION AND CONCLUSION 
While the second layer of the proposed adaptive system 

models the motor units (the motor neurons from the spinal 
cord level) and the HR neuron models the coupling 
mechanism between the visual and the central tremor 
generators, the necessity of the first hidden layer (needed in 
order to replicate the frequency doubling mechanism) 
supports the hypothesis of immixture of an intermediary 
cortical/sub-cortical relay area versus the hypothesis of 
“pure” sensory pathways.  

The axons that innervate the thalamus and also give off 
branches to lower motor centres (see the first ANN model in 
the first paradigm context) are crucial for an immediate 
response; precisely, they will command – through the alpha 
neurons – the muscle to execute the coarse-fast movements 
like one presented in Figure 5 (a) and (b). 

In this paper we presented and motivated the necessity of 
the existence of some cortical/sub-cortical relays in order to 
achieve a similar hand tremor behaviour with the one 
obtained in the real situation. Obviously, in order to get the 
very natural hand behaviour the two model paradigms, 
analysed in this paper, should be mixed and, in addition, the 
reflex arc should be taken into account as well.  
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Fig. 6.  The results obtained for the second paradigm model in the first stage of the learning process: (a) the desire signal and the output of the neural 
network, (b) a detail segment of the previously time series, and (c) the spectrum of the network output signal and of the desire signal.
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